Approximations of the standard principal components analysis and kernel PCA
نویسندگان
چکیده
Principal component analysis (PCA) is a powerful technique for extracting structure from possibly highdimensional data sets, while kernel PCA (KPCA) is the application of PCA in a kernel-defined feature space. For standard PCA and KPCA, if the size of dataset is large, it will need a very large memory to store kernel matrix and a lot of time to calculate eigenvalues and corresponding eigenvectors. The aim of this paper is to learn linear and nonlinear principal components by using a few partial data points and determine which data points can be used. To verify the performance of the proposed approaches, a series of experiments on artificial datasets and UCI benchmark datasets are accomplished. Simulation results demonstrate that the proposed approaches can compete with or outperform the standard PCA and KPCA in generalization ability but with much less memory and time consuming. 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Object Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملChemical and Physical Indicators in Drinking Water and Water Sources of Boroujerd Using Principal Components Analysis
Abstract Background and Objective: Quality control of drinking water is important for maintaining health and safety of consumers, and the first step is to study the water quality variables. This study aimed to evaluate the chemical and physical indicators, water quality variables and qualitative classification of drinking water stations and water sources in Boroujerd. Material and Methods...
متن کاملHyperparameter Selection in Kernel Principal Component Analysis
In kernel methods, choosing a suitable kernel is indispensable for favorable results. No well-founded methods, however, have been established in general for unsupervised learning. We focus on kernel Principal Component Analysis (kernel PCA), which is a nonlinear extension of principal component analysis and has been used electively for extracting nonlinear features and reducing dimensionality. ...
متن کاملSparse Kernel Principal Component Analysis
'Kernel' principal component analysis (PCA) is an elegant nonlinear generalisation of the popular linear data analysis method, where a kernel function implicitly defines a nonlinear transformation into a feature space wherein standard PCA is performed. Unfortunately, the technique is not 'sparse', since the components thus obtained are expressed in terms of kernels associated with every trainin...
متن کاملDe-noising and Recovering Images Based on Kernel PCA Theory
ABSTRACT Principal Component Analysis (PCA) is a basis transformation to diagonalize an estimate of the covariance matrix of input data and, the new coordinates in the Eigenvector basis are called principal components. Since Kernel PCA is just a PCA in feature space F , the projection of an image in input space can be reconstructed from its principal components in feature space. This enables us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert Syst. Appl.
دوره 37 شماره
صفحات -
تاریخ انتشار 2010